Title: | Tools for Handling Extraction of Features from Time Series |
---|---|
Description: | Consolidates and calculates different sets of time-series features from multiple 'R' and 'Python' packages including 'Rcatch22' Henderson, T. (2021) <doi:10.5281/zenodo.5546815>, 'feasts' O'Hara-Wild, M., Hyndman, R., and Wang, E. (2021) <https://CRAN.R-project.org/package=feasts>, 'tsfeatures' Hyndman, R., Kang, Y., Montero-Manso, P., Talagala, T., Wang, E., Yang, Y., and O'Hara-Wild, M. (2020) <https://CRAN.R-project.org/package=tsfeatures>, 'tsfresh' Christ, M., Braun, N., Neuffer, J., and Kempa-Liehr A.W. (2018) <doi:10.1016/j.neucom.2018.03.067>, 'TSFEL' Barandas, M., et al. (2020) <doi:10.1016/j.softx.2020.100456>, and 'Kats' Facebook Infrastructure Data Science (2021) <https://facebookresearch.github.io/Kats/>. |
Authors: | Trent Henderson [cre, aut], Annie Bryant [ctb] |
Maintainer: | Trent Henderson <[email protected]> |
License: | MIT + file LICENSE |
Version: | 0.6.3 |
Built: | 2024-11-02 05:29:55 UTC |
Source: | https://github.com/hendersontrent/theft |
Compute features on an input time series dataset
calculate_features( data, id_var = "id", time_var = "timepoint", values_var = "values", group_var = NULL, feature_set = c("catch22", "feasts", "tsfeatures", "Kats", "tsfresh", "TSFEL"), catch24 = FALSE, tsfresh_cleanup = FALSE, features = NULL, seed = 123 )
calculate_features( data, id_var = "id", time_var = "timepoint", values_var = "values", group_var = NULL, feature_set = c("catch22", "feasts", "tsfeatures", "Kats", "tsfresh", "TSFEL"), catch24 = FALSE, tsfresh_cleanup = FALSE, features = NULL, seed = 123 )
data |
|
id_var |
|
time_var |
|
values_var |
|
group_var |
|
feature_set |
|
catch24 |
|
tsfresh_cleanup |
|
features |
named |
seed |
|
object of class feature_calculations
that contains the summary statistics for each feature
Trent Henderson
featMat <- calculate_features(data = simData, id_var = "id", time_var = "timepoint", values_var = "values", group_var = "process", feature_set = "catch22", seed = 123)
featMat <- calculate_features(data = simData, id_var = "id", time_var = "timepoint", values_var = "values", group_var = "process", feature_set = "catch22", seed = 123)
Check for presence of NAs and non-numerics in a vector
check_vector_quality(x)
check_vector_quality(x)
x |
input |
Boolean
of whether the data is good to extract features on or not
Trent Henderson
The variables include:
feature_list
feature_list
A tidy data frame with 2 variables:
Name of the set the feature is from
Name of the feature
Communicate to R the Python virtual environment containing the relevant libraries for calculating features
init_theft(venv)
init_theft(venv)
venv |
|
no return value; called for side effects
Trent Henderson
## Not run: install_python_pkgs("theft-test") init_theft("theft-test") ## End(Not run)
## Not run: install_python_pkgs("theft-test") init_theft("theft-test") ## End(Not run)
Download and install all the relevant Python packages into a target location
install_python_pkgs(venv, standard_kats = TRUE)
install_python_pkgs(venv, standard_kats = TRUE)
venv |
|
standard_kats |
|
no return value; called for side effects
Trent Henderson
## Not run: install_python_pkgs("theft-test") ## End(Not run)
## Not run: install_python_pkgs("theft-test") ## End(Not run)
Load in hctsa formatted MATLAB files of time series data into a tidy format ready for feature extraction
process_hctsa_file(data)
process_hctsa_file(data)
data |
|
an object of class data.frame
in tidy format
Trent Henderson
The variables include:
simData
simData
A tidy data frame with 4 variables:
Unique identifier for the time series
Time index
Value
Group label for the type of time series
Tools for Handling Extraction of Features from Time-series